
Sketching data structures for massive
graph problems

Juan P. A. Lopes1, Fabiano S. Oliveira2, Paulo E. D. Pinto2, and
Valmir C. Barbosa1

1 Federal University of Rio de Janeiro, Brazil
{jlopes,valmir}@cos.ufrj.br

2 State University of Rio de Janeiro, Brazil
{fabiano.oliveira,pauloedp}@ime.uerj.br

Abstract. In this work, we explore the application of sketching data
structures to solve problems in graphs that do not fit entirely in mem-
ory. These structures allow compact representations of data, admitting
some probability of failure. We aim at the implicit representation and
dynamic connectivity problems. Our contributions include two new prob-
abilistic implicit representations, one that uses Bloom filters and allows
representing sparse graphs with O(|E|) bits, and another that uses Min-
Hash sketches and represents trees with O(|V |) bits. We also describe
a variant of an `0-sampling sketch that allows proving a tighter upper
bound on the failure probability of sampling.

Keywords: Sketching data structures · Graphs · Stream algorithms.

1 Introduction

Sketching data structures allow the representation of data in a compact fash-
ion, often in sublinear space with respect to the original data. The interest in
these data structures has increased in recent years, as a direct consequence of
the emergence of applications that deal with large volumes of streaming data.
In these applications, it is often necessary to answer queries quickly, which is
infeasible by simply querying over stored data due to high latency. Be that as it
may, such volumes do not generally fit into memory in the first place. Sketching
data structures offer a good compromise for many applications, allowing less
memory and CPU usage at the cost of decreased accuracy.

In this work, we survey some sketching data structures and their applications
to massive graph problems. In Section 2, we describe the application of Bloom
filters and MinHash sketches to the implicit graph representation problem [16],
one of them representing trees with better space complexity than the optimal
deterministic representation. In Section 3, we detail two variants of a sketch
to solve the `0-sampling problem, which can be used to determine dynamic
connectivity in n-vertex graph streams using O(n log3 n) bits [1, 13].

2 J. P. A. Lopes et al.

2 Probabilistic implicit graph representations

An implicit graph representation is a vertex labeling scheme that allows testing
the adjacency between any two vertices efficiently by just comparing their la-
bels [15, 9, 16]. More formally, given a graph class C with 2Θ(f(n)) graphs with n
vertices, a representation is said to be implicit if

1. it is space-optimal, that is, it requires O(f(n)) bits to represent graphs in C;
2. it distributes information evenly among vertices, that is, each vertex is rep-

resented by a label using O(f(n)/n) bits;
3. the adjacency test is local, that is, when testing the adjacency of any two

vertices, only their labels are used in the process.

According to this definition, the adjacency matrix is an implicit represen-
tation of the class containing all graphs, because there are 2Θ(n2) graphs on n
vertices and the adjacency matrix can represent them using Θ(n2) bits. On the
other hand, for m the number of edges, the adjacency list is not an implicit
representation, because it requires Θ(m log n) bits to represent the same graph
class, which may require Θ(n2 log n) bits in the worst case (e.g., for complete
graphs). In contrast, an adjacency list is space-optimal to represent trees, as
O(m log n) = O(n log n) for trees and there are 2Θ(n logn) trees on n vertices,
but still it is not an implicit representation because it does not distribute infor-
mation evenly: each tree vertex may use Θ(n log n) bits to represent its adjacency
in an adjacency list (e.g., the center vertices of stars).

In [11], the concept of probabilistic implicit graph representations was ex-
plored, extending the concept of implicit representations by relaxing one of the
properties: the adjacency test is probabilistic, meaning that it has a constant
probability of resulting in false negatives or false positives. A 0% chance of false
positives and negatives implies an ordinary implicit representation. The main
benefit of probabilistic representations is the ability to trade accuracy for mem-
ory, that is, to achieve more space-efficient representations by allowing some
incorrect results in adjacency tests. We present two novel probabilistic implicit
representations, each based on a distinct sketching data structure.

2.1 Representation based on Bloom filters

The Bloom filter is a data structure that represents a set S′ ⊆ S and allows
testing elements for set membership with some probability of false positives,
but no false negatives [2]. A Bloom filter consists of an array M of m bits
and k pairwise independent hash functions, hi : S → [1, . . . ,m] for 1 ≤ i ≤
k. The insertion of an element x is performed by computing k hash values,
h1(x), . . . , hk(x), and setting these indices in the array to 1, that is,M [hi(x)]← 1
for all 1 ≤ i ≤ k. The membership query for some element x is done by verifying
whether all bits in positions given by the hash values are 1, that is, by verifying
whether M [hi(x)] = 1 for all 1 ≤ i ≤ k. If at least one bit is 0, then x is
certainly not in the set. If all bits are 1, it is assumed that the element is in the

Sketching data structures for massive graph problems 3

set, although this may not be the case (a false positive). The probability of a
false positive when n elements are already stored (event FP) can be determined
from the probability of collisions in all k hash values, that is,

Pr[FP] = Pr

 ∧
1≤i≤k

M [hi(x)] = 1

 =

(
1−

(
1− 1

m

)kn)k
≈
(

1− e−kn/m
)k
.

Defining q = m/n, that is, q as the ratio between the size of M in bits and
the number of stored elements, it is possible to show that the probability of false
positives is minimized when k ≈ q ln 2, so Pr[FP] ≈ (1− e− ln 2)q ln 2 ≈ 0.6185q.
Thus, for example, setting the dimension of M to 10 bits per element and using
7 hash functions, it is possible to estimate set membership with less than 1% of
false positives.

Bloom filters are commonly used in database systems, both to avoid the
attempt to fetch non-existing data and to optimize communication costs in
distributed joins. In summary, Bloom filters are useful in contexts where the
performance gain in negative queries makes up for the cost of false positives.

Bloom filters can also be used in implicit graph representations, as follows.
For each vertex, a Bloom filter is created using some constant number of bits
per element (say, 10 bits), representing the set of vertices adjacent to it. The set
of Bloom filters of all vertices constitutes a probabilistic implicit representation.
This representation requires Θ(

∑
v∈V (G) d(v) = 2m) bits to represent any graph,

which makes it equivalent to the adjacency matrix in the worst case (e.g., for
complete graphs). However, this representation has better space complexity for
sparse graphs than the deterministic one. In fact, it is better for any graph having
m = o(n2). Also, it has the property of not allowing false negatives in adjacency
tests. That is, it will never fail to report an existing edge, although it may report
the existence of non-existing edges with a small probability.

The theoretical predictions about this representation were verified through
three practical experiments. These experiments aimed to validate the rate of
false positives as the graph’s density (2m/(n2 − n)) or the number of bits per
edge (q) changed while keeping other parameters fixed (results are shown in
Figure 1).

0.2 0.4 0.6 0.8
0 %

1 %

2 %

3 %

4 %

Graph density (2m/(n2 − n))

q = 10, n = 200

5 10 15 20

Bits per edge (q)

n = 200,m = 9950

false positives

Fig. 1. Rate of false positives.

4 J. P. A. Lopes et al.

2.2 Representation based on MinHash

MinHash is a sketching data structure that represents sets A,B ∈ S and allows

estimating their Jaccard coefficient, J(A,B) = |A∩B|
|A∪B| [3]. The estimation is done

by computing a signature (a k-tuple of hash values) for each set S ∈ S, using k
pairwise independent hash functions h1, . . . , hk. Each element in the signature
is given by hmin

i (S) = min{hi(x) : x ∈ S}, 1 ≤ i ≤ k. The probability of two sets
A and B having a common signature element can be shown to be equal to their
Jaccard coefficient, that is, Pr[hmin

i (A) = hmin
i (B)] = J(A,B), 1 ≤ i ≤ k. Given

two sets A, B, let Xi denote the Bernoulli random variable such that Xi = 1 if
hmin
i (A) = hmin

i (B), or Xi = 0 otherwise. The set {X1, . . . , Xk} consists of an
independent set of unbiased estimators for J(A,B), in such a way that increas-
ing k decreases the estimator variance. The error bounds for the estimation of
J(A,B) can be proved using the Chernoff inequalities. In particular, to achieve
an error factor of θ with probability greater than 1− δ, k should be chosen such
that k ≥ 2+θ

θ2 ln(2/δ).
MinHash’s original motivation remains its most useful application, detecting

plagiarism. It is possible to evaluate the similarity of two documents by only
comparing their MinHash signatures in constant time. It can also be used in
conjunction with HyperLogLog [7] to estimate the cardinality of set intersection
without having both sets in the same machine [12].

In the context of graphs, we introduced a probabilistic implicit representation
based on MinHash in which the main idea is, for any graph G = (V,E) in a
class C and for some pair of constants 0 ≤ δA < δB ≤ 1, to find representing
sets Sv 6= ∅ for every v ∈ V such that the following two conditions hold: (i)
J(Su, Sv) ≥ δB if and only if (u, v) ∈ E, and (ii) J(Su, Sv) ≤ δA if and only if
(u, v) /∈ E. Therefore, no pairwise Jaccard coefficient of representing sets should
lie within the interval (δA, δB). This way, the adjacency (u, v) could be tested
by determining J(Su, Sv) and comparing it with δA and δB . We use MinHash to
provide not the exact values, but estimates of the Jaccard coefficients. Therefore,
the actual idea to test adjacency is to assume that (u, v) ∈ E if J(Su, Sv) > δ
for some δA ≤ δ ≤ δB . Note that only the signatures of the representing sets
must be stored, requiring a constant number of elements. Furthermore, those
signatures can be represented with a constant number of bits [10], and therefore
a representation based on MinHash requires O(n) bits to represent any class for
which such representing sets exist.

In [11], we presented an algorithm to build such representing sets for trees
with δA = 1/3 and δB = 1/2. Given a tree T , the construction is performed re-
cursively starting at an arbitrary vertex v, with Sv being defined with ` arbitrary
distinct elements, where ` = min{2r : r ∈ N | 2∆(T) ≤ 2r}. Transforming T into
a tree rooted at v, for each level the procedure alternates between choosing Su as
a subset of Sp (selection phase) and choosing Su as a superset of Sp (extension
phase), where p is the parent of u in T . Figure 2 exemplifies this construction.

The selection phase is done as follows. For a set Sp = {a1, . . . , ax}, x/2
subsets U1, . . . , Ux/2 are selected from it, each with x/2 elements, such that each
pair of subsets has x/4 elements in common. This way, J(Ui, Uj) = 1/3 for

Sketching data structures for massive graph problems 5

A

CB

{1, 2, 3, 4, 5, 6, 7, 8}

D E
F

G

{1, 3, 5, 7} {1, 4, 5, 8}

{1, 3, 5, 7, 9, 10, 11, 12}
{1, 3, 5, 7, 13, 14, 15, 16}

{1, 4, 5, 8, 17, 18, 19, 20}

{1, 5, 9, 11}

root

selection

extension

selectionH I J

{1, 5, 17, 19} {1, 8, 17, 20} {1, 5, 18, 20}

Fig. 2. Example of representing sets for a given tree.

1 ≤ i < j ≤ x/2 and J(Ui, Sp) = 1/2 for 1 ≤ i ≤ x/2. Thus, each child of p must
be assigned a distinct Ui as its representing set. The efficient implementation
of this selection procedure is based on the representation by a binary string
ui, with length x/2, of a subset Ui ⊂ Sp, such that if the jth bit of ui has
value b, then a2j−1+b belongs to Ui. The generation of the strings that represent
U1, . . . , Ux/2 can be achieved iteratively, starting from a 1 × 1 matrix and, at
each step, fourfolding the current matrix with negated bits in the lower right
quadrant. This is illustrated in Figure 3 for Sp = {1, . . . , 8}. The extension
phase is done through the inclusion of |Sp| unique elements from the already
defined representing sets.

1

3

2

4

i

1 2 3 4 5 6 7 8

a
1

a
2

1 3 5 7

1 3 6 8

1 4 5 8

1 4 6 7

U
i

0000

0011

0101

0110

a
3

a
4

a
5

a
6

a
7

a
8

u
i

0
0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

1 1

1 0

1

2

3

4

1 2 3 4

1 2

1

2

1

1

Fig. 3. Example of a subset selection for Sp = {1, . . . , 8}.

The MinHash signatures are then computed for the representing sets and used
as labels for the corresponding vertices. As this labeling scheme requires only
O(n) space to probabilistically represent trees, a class with 2Θ(n logn) graphs on
n vertices, such a probabilistic representation has better space complexity than
the optimal deterministic representation.

The theoretical predictions about this representation were verified through
three practical experiments. The experiments aimed to validate the rate of false
positives and negatives as we change the evaluation threshold (δ), the number

6 J. P. A. Lopes et al.

of vertices in the graph (n), and the signature size (k), while keeping the other
parameters fixed. The results are shown in the Figure 4.

0.1 0.2 0.3 0.4 0.5
0 %

2 %

4 %

6 %

8 %

10 %

Threshold (δ)

k = 128, n = 200

50 100 150 200

Number of vertices (n)

k = 128, δ = 0.375

50 100

Signature size (k)

n = 200, δ = 0.375

false positives

false negatives

Fig. 4. Rate of false positives and negatives.

2.3 Considerations on bipartite graphs

In [16], it is shown that any hereditary graph class with 2Θ(n2) members of n
vertices should entirely include either the bipartite, co-bipartite, or split graphs.
Also, it is possible to transform any graph G = (V,E) into a bipartite graph
G′ = (V ′, E′) such that V ′ = {v1, v2 | v ∈ V }, and E′ = {(u1, v2), (v1, u2) |
(u, v) ∈ E}. Any efficient representation of G′ can be used to efficiently rep-
resent G. This makes the search for a probabilistic representation of bipartite
graphs specially appealing. However, we proved the non-existence of some repre-
sentations. For example, it is impossible to construct a MinHash-based represen-
tation with δA = 0.4 and δB = 0.6 for a graph as simple as the complete bipartite
K3,3 [11]. Our proof is based on the formulation of a corresponding integer lin-
ear programming problem, which turns out to be infeasible. This suggests that
further investigation concerning this probabilistic implicit graph representation
is that of characterizing the class of graphs that are amenable to it.

3 Graph-streams connectivity

In many real applications, graphs are not static entities. Instead, it is often the
case that edges and vertices are added and removed with high frequency. The
study of fully dynamic graph algorithms is already well established [6, 13], but
the recent explosion in the scale of graphs has encouraged further research into
algorithms that require sublinear space to compute queries on them. In this
work, we present two variants of an `0-sampling sketch, a data structure that
allows the sampling of edges in graph cut-sets and can be used to determine
dynamic graph connectivity using O(n log3 n) bits.

Sketching data structures for massive graph problems 7

3.1 `0-sampling sketch

The `0-sampling problem consists in sampling a nonzero coordinate from a dy-
namic vector a = (a1, . . . , an) with uniform probability. This vector is defined
in a turnstile model, which consists of a stream of updates S = 〈s1, s2, . . . , st〉
on a (initially 0), where si = (ui, ∆i) ∈ {1, . . . , n} × R for 1 ≤ i ≤ t, meaning
an increment of ∆i units to aui

. It is desirable that such sample be produced in
a single pass through the stream with sublinear space complexity. The challenge
arises from the fact that, since ∆i can be negative and hence some updates in
the stream may cancel others, directly sampling the stream may lead to incor-
rect results. In order to achieve sublinear space complexity in a single pass, an
`0-sampling algorithm must represent a through a sketch.

In [5], a seminal sketch-based algorithm for the `0-sampling problem was in-
troduced. The algorithm uses a universal family of hash functions to partition the
vector a into O(log n) subvectors with exponentially decreasing probabilities of
representing each element of a. It is proved that there is a constant lower bound
on the probability that at least one of those subvectors has exactly one nonzero
coordinate. Through a procedure called 1-sparse recovery, which stores O(log n)
bits for each subvector, it is possible to recover such coordinate. Considering
that the probability of failure has a constant upper bound, running O(log(1/δ))
independent instances of the algorithm can ensure a success probability of at
least 1 − δ. The total space complexity of this algorithm is O(log2 n log(1/δ)).
Further studies show stronger results by relaxing assumptions on the hash func-
tions used [14, 8]. Nevertheless, they keep the same worst-case space complexity.
In fact, any algorithm that performs `0-sampling in a single pass should require
Ω(log2 n) bits in the worst case [8]. This holds even if the algorithm allows a
relative error of ε and a failure probability of δ.

1-sparse recovery procedure A vector is 1-sparse when it has a single nonzero
coordinate. A 1-sparse recovery procedure allows deciding whether a vector a
is 1-sparse, and recover the only nonzero coordinate from it. Note that while a
is expected to be 1-sparse at the time of a successful recovery, it may have any
number of nonzero coordinates before that. This procedure is a building block
for many `0-sampling algorithms. Here we present a false-biased randomized
variant that handles cases where a has negative values [4]. It begins by choosing
a sufficiently large prime p ≤ nc, for some constant c > 1, and a random integer
z ∈ Zp. Then, iterating through all si = (ui, ∆i) ∈ S, three sums are computed:

b0 =

t∑
i=1

∆i, b1 =

t∑
i=1

∆iui, b2 =

t∑
i=1

∆iz
ui mod p.

If a is 1-sparse, it is easy to see that the nonzero coordinate i can be recovered
as i = b1/b0, with ai = b0. However, verifying that a is 1-sparse requires more
effort.

8 J. P. A. Lopes et al.

Theorem 1. If a is 1-sparse, then b2 ≡ b0z
b1/b0 mod p. Otherwise, b2 6≡

b0z
b1/b0 mod p with probability at least 1− n/p.

Proof (sketch). If a is 1-sparse, with a nonzero coordinate i, it is trivial to see
that b2 ≡ aiz

i mod p. Otherwise, b2 ≡ b0z
b1/b0 mod p may still hold if z is a

root in Zp of the polynomial p(z) = b0z
b1/b0 −

∑
∆iz

ui . As p(z) is a degree-n
polynomial, it has at most n roots in Zp. Therefore, given that z is chosen at
random, the probability of a false recovery is at most n/p. ut

This 1-sparse recovery procedure stores z, b0, b1, and b2. Assuming that every
ai is limited by a polynomial in n, the total space required is O(log n) bits.

Algorithm Here, two variants of the same `0-sampling sketch are presented.
Both variants define a(1),a(2), . . . ,a(m) subvectors of a. For all 1 ≤ j ≤ m, each

ai 6= 0 has a 1/2j probability of being present at a(j), that is, a
(j)
i = ai with

probability 1/2j , otherwise a
(j)
i = 0. To decide whether a

(j)
i is present, we draw

a hash function hj : {1, . . . , n} → {0, . . . , 2m − 1} from a universal family, and
observe whether m− blog2 hj(i)c = j, which happens with probability 1/2j . An
independent 1-sparse recovery is then computed for each a(j). The variants differ
only in the number of functions used. Variant (a) uses a single hash function for
every a(j) (Algorithm 1), while Variant (b) uses a different function for each
subvector (Algorithm 2). While Variant (a) is more useful in practice, the error
analysis for Variant (b) is more straightforward. We provide empirical evidence
that the error in either variant converges quickly as a function of n.

Algorithm 1 Variant (a)

1: M [1..m]: 1-sparse recoveries
2: for each (ui,∆i) ∈ S do
3: k ← m− blog2 h(ui)c
4: M [k].b0 += ∆i

5: M [k].b1 += ∆iui

6: M [k].b2 += ∆iM [k].zui mod p

7: for j ∈ [1..m] do
8: v ←M [j].b0M [j].zM [j].b1/M [j].b0 mod p
9: if M [j].b2 = v then

10: return M [j].b1/M [j].b0

11: report Failure

Algorithm 2 Variant (b)

1: M [1..m] : 1-sparse recoveries
2: for each (ui,∆i) ∈ S do
3: for j ∈ [1..m] do
4: k ← m− blog2 hj(ui)c
5: if k = j then
6: M [k].b0 += ∆i

7: M [k].b1 += ∆iui

8: M [k].b2 += ∆iM [k].zui mod p

9: for j ∈ [1..m] do
10: v ←M [j].b0M [j].zM [j].b1/M [j].b0 mod p
11: if M [j].b2 = v then
12: return M [j].b1/M [j].b0

13: report Failure

Each variant either succeeds in returning a single nonzero coordinate of a
or reports a failure. The probability of failure is given by the joint probability
of failure of all m 1-sparse recoveries. In Variant (b), these are independent
events. The probability that a single recovery M [j] fails is the complement of
the probability that a(j) is 1-sparse, that is, assuming a has r � 1 nonzero
coordinates:

Pr[Failure] =

m∏
j=1

(
1− r2−j(1− 2−j)r−1

)
≈

m∏
j=1

(
1− r2−je−r2

−j
)
.

Sketching data structures for massive graph problems 9

Theorem 2. If 5 ≤ log2 r ≤ m− 5, then Pr[Failure] ≤ 0.31 for Variant (b).

Proof (sketch). It is easy to see that the lowest probabilities of failure concen-
trate around j such that 2j ≤ r < 2j+1. Letting q = r/2blog2 rc, it holds that

Pr[Failure] ≤
5∏

k=−5

(
1− q2ke−q2

k
)
.

Note that 1 ≤ q < 2. In this interval, all factors 1 − q2ke−q2
k

are either
monotonically increasing or decreasing. Analyzing their global maxima, we arrive
at a maximum product of approximately 0.3071, therefore Pr[Failure] ≤ 0.31.

ut

This result shows that, as n grows, choosing m = 5 + dlog2 ne is enough to
ensure a constant upper bound on the probability of failure. Furthermore, to
ensure a success probability of at least 1 − δ, it is sufficient to run dlog0.31 δe
instances of the sketch.

In order to assess the algorithm’s behavior in a real implementation, an
experiment was set up. Both variants were implemented and tested with a vector
of size n = 4 096 and increasing values of r. We tested both a correctly sized
(i.e., for m = 17) and an undersized instance of the `0-sampling sketch. The
empirical cumulative distribution was also recorded. The experiment was run
100 000 times and the mean value for each data point is reported in Figure 5.

32 1024 2048 3072 4096
0 %

20 %

40 %

60 %

80 %

100 %

V
a
ri
a
n
t
(a
)

Failures
n = 4096,m = 17

failure rate

32 1024 2048 3072 4096

Failures
n = 4096,m = 10 (undersized)

failure rate

32 1024 2048 3072 4096

CDF
n = 4096,m = 17

cumulative distribution

32 1024 2048 3072 4096
0 %

20 %

40 %

60 %

80 %

100 %

Number of nonzero coordinates (r)

V
a
ri
a
n
t
(b

)

32 1024 2048 3072 4096

Number of nonzero coordinates (r)

32 1024 2048 3072 4096

Sampled coordinate

Fig. 5. Failure rate and cumulative distribution of successes.

This experiment suggests that in a correctly sized `0-sampling sketch, the
failure probability stays almost constant and under 20%. There is little difference

10 J. P. A. Lopes et al.

between Variants (a) and (b). Furthermore, in an undersized setup, the failure
rate rapidly reaches critical levels.

3.2 Dynamic connectivity using `0-samplers

It is possible to use `0-sampling sketches to determine whether a dynamic graph
G = (V,E) is connected. One possible randomized algorithm runs in O(log n)
turns and either answers affirmatively with certainty or negatively with a con-
stant probability of error [1].

The algorithm starts with an empty subgraph of G. In each turn, for each
connected component S ⊂ V , an edge is drawn (if any) from the cut-set [S, V \S],
connecting two components. It is possible to prove that this procedure finishes
in at most dlog2 ne turns, yielding a spanning tree of G if it is connected.

The `0-sampling sketches are used to represent each vertex set’s adjacency, in
the form of a modified incidence vector, where each edge is represented twice, one
for each ordering of its ends. More formally, given an ordering u1w1, . . . , umwm
of the edges of E, we define a vector av = (avu1w1

, avw1u1
, . . . , avumwm

, avwmum
), for

each vertex v ∈ V , in a way that avu,w = 1 if v = u; avu,w = −1, if v = w; or
avu,w = 0, otherwise.

This representation has the useful property that, for each set of vertices
S = {v1, v2, . . . , vq}, the nonzero coordinates of aS =

∑q
i=1 a

vi represents the
edges across the cut [S, V \ S]. Therefore, considering that the `0-sampling rep-
resentation of any vector a is a linear transformation of that vector, this implies
that a set of `0-sampling sketches can be used to sample edges in any cut-set of
a graph.

It is important to note that an `0-sampling sketch cannot be reused to sample
another edge with the same failure probability. Nevertheless, a different sampling
sketch can be used in each turn of the algorithm. Keeping dlog2 ne `0-sampling
sketches (one for each turn) for each vertex allows performing the connectivity
algorithm just described using O(n log3 n) bits.

4 Conclusion

In this paper we explored the use of sketching data structures for massive graph
problems. We have established the concept of probabilistic implicit graph rep-
resentations, introducing two new representations. One, based on Bloom filters,
can represent sparse graphs with O(m) bits; another, based on MinHash, can
represent trees with O(n) bits. We have provided empirical evidence confirming
the theoretical predictions about these representations.

We have also described a variant of the `0-sampling sketch and proved its fail-
ure probability to be bounded by a constant value, provided a certain structure-
size condition is met. A simple dynamic graph connectivity algorithm using this
sketch was explained. Research is ongoing on the proof of exact probabilities of
failure for both algorithm variants. Future research may also include novel graph
algorithms that use `0-sampling as a primitive.

Sketching data structures for massive graph problems 11

Acknowledgements

The authors acknowledge partial financial support from CNPq, CAPES, and a
FAPERJ BBP grant.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of SODA’12. pp. 459–467 (2012)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

3. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of SEQUENCES’97. pp. 21–29 (1997)

4. Cormode, G., Firmani, D.: A unifying framework for `0-sampling algorithms. Dis-
tributed and Parallel Databases 32(3), 315–335 (2014)

5. Cormode, G., Muthukrishnan, S., Rozenbaum, I.: Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In: Proceedings of
VLDB’05. pp. 25–36 (2005)

6. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah,
M.J. (ed.) Algorithms and Theory of Computation Handbook, chap. 8. CRC Press
(1999)

7. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In: Proceedings of AofA’07. pp.
127–146 (2007)

8. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for Lp samplers, finding du-
plicates in streams, and related problems. In: Proceedings of PODS’11. pp. 49–58
(2011)

9. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal
on Discrete Mathematics 5(4), 596–603 (1992)

10. Li, P., König, A.C.: b-bit minwise hashing. In: Proceedings of WWW’10. pp. 671–
680 (2010)

11. Lopes, J.P.A.: Probabilistic data structures applied to implicit graph representa-
tion. Master’s thesis, State University of Rio de Janeiro (2017), in Portuguese

12. Lopes, J.P.A., Oliveira, F.S., Pinto, P.E.D.: Estimating the intersection cardinal-
ity of sets using MinHash and HyperLogLog. In: Proceedings of CNMAC’16. pp.
010077-1–2 (2017), in Portuguese

13. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Record 43(1),
9–20 (2014)

14. Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error Lp-sampling with appli-
cations. In: Proceedings of SODA’10. pp. 1143–1160 (2010)

15. Muller, J.H.: Local structure in graph classes. Ph.D. thesis, Georgia Institute of
Technology (1988)

16. Spinrad, J.P.: Efficient graph representations. American Mathematical Society
(2003)

