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Motivation
Why are sketching data structures
relevant to graph problems?
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Some real-life graphs are massive
Observing global structures is hard

2.2
billion

128
MB

233
billion

23
billion

100’s
of billionsNumber of connected 

devices, 2018.

Internet

Estimated number of 
directed edges, 2018.

Twitter

Number of active users, 2018.
Facebook

Typical amount of RAM in 
a typical router.

Routers

Number of basepairs in a typical 
metagenomic sample.

Metagenomic assemblies
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SOME REAL-LIFE GRAPHS ARE 
MASSIVE AND DYNAMIC

How to deal with them?
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Probabilistic Implicit 
Representations
Use less memory by allowing errors
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Space Optimal Representations

General 
Graphs Trees Complete 

Graphs

Adjacency Matrix: 
O(n2)

Adjacency List: 
O(m log n)

● A representation is said to be space optimal if it requires O(f(n)) bits to 
represent a class containing 2ϴ(f(n)) graphs on n vertices;

● Optimality depends on the represented class.

7
Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.



Implicit Representations

A representation is said to be implicit if it has the following properties:

Space optimal
O(f(n)) bits to represent a class containing 2ϴ(f(n)) graphs on n vertices;

Distributes information
Each vertex stores O(f(n)/n) bits;

Local adjacency test
Only local vertex information is required to test adjacency;

8
Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.



Probabilistic Implicit Representations

Space optimal
O(f(n)) bits to represent a class containing 2ϴ(f(n)) graphs on n vertices;

Distributes information
Each vertex stores O(f(n)/n) bits;

Local adjacency test
Only local vertex information is required to test adjacency;

For probabilistic implicit representations, we introduce a fourth property:

Probabilistic adjacency test
Constant relative probability of false positives or false negatives.
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Bloom filter
Represents sets, allowing membership 
tests with a probability of false 
positives. 

● There are no false negatives;
● 10 bits per element are enough to 

ensure for a false positive 
probability of less than 1%.

10
Bloom, B. H. (1970). Space/time trade-offs in hash coding with 
allowable errors. Communications of the ACM.



Bloom filter
Idea: to replace each vertex set in an 
adjacency list with a Bloom filter.

● Each edge would require only 
O(1) bits, instead of O(log n);

● By using Bloom filters, there 
would be no false negatives, only 
false positives.

● Similarly, a single Bloom filter 
could be used to store the entire 
edge set, but technically this 
would not be an implicit 
representation.
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MinHash
Represents sets through a 
constant-sized signature and allow 
computing the Jaccard coefficient 
between two or more sets.

6MinHash(A) 71 57 106

81MinHash(B) 80 34 73 88

6 71 57 106

81 80 73 88

11 6 1 34

11 6 1 34

12
Broder, A. Z. (1997). On the resemblance and containment of 
documents. In Compression and complexity of sequences.



MinHash
Idea: construct a set for each vertex, such that the Jaccard index between any 
pair of vertices encodes their adjacency.

0 1δ
A

δ
B
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MinHash
Example of sets construction for δA = ⅓ and δB = ½.

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 3, 5, 7} {1, 4, 5, 8}

{1, 3, 5, 7, 9, 10, 11, 12}

{1, 3, 5, 7, 13, 14, 15, 16}

{1, 4, 5, 8, 17, 18, 19, 20}

{1, 5, 9, 11}

root

selection

extension

selection
{1, 5, 17, 19} {1, 8, 17, 20} {1, 5, 18, 20}

O(n) bits
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Experimental Results
For MinHash-based representation

1
Increasing the threshold 
seems to increase the rate of 
false negatives and decrease 
false positives.

2
The perfect threshold depends 
on the application tolerance 
for false positives and false 
negatives.

3

Observations
The experiment was run with 
k=128 hash functions and a 
graph with n=200 vertices.
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Experimental Results
For MinHash-based representation

1
Increasing the signature size 
seems to have more effect on 
the rate of false negatives 
than positives.

2
This effect appears the same 
for whatever choice of 
threshold.3

Observations
The experiment was run with 
δ = 0.375 and a graph with 
n=200 vertices.
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Other results
Any efficient representation for bipartite, co-bipartite or split graphs can be 
used to represent general graphs efficiently.
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Other results
Modeling this problem through integer 
programming allows proving the 
infeasibility of specific configurations.

xA

xAB
SA

SB

SC

xB

xC

xAC xBC

xABCA

B

C

● Each possible subset of vertices is 
modelled as a variable.

● Each variable describes the size 
of the set intersection between 
those vertices.
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Other results
Modeling this problem through integer 
programming allows proving the 
infeasibility of specific configurations.

● Each possible subset of vertices is 
modelled as a variable.

● Each variable describes the size 
of the set intersection between 
those vertices.

● Do all threshold values have an 
infeasible bipartite graph? Still an 
open problem.

K3,3

● Impossible for δA = 0.4 e δB = 0.6.

● Possible for δA = ⅓ e δB = ½.
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Graph Streams
How to represent dynamic graphs in sublinear space?
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Graph Streams
Graph Streams are graphs represented in the data stream model, i.e. 
single-pass through a stream of edge insertions and deletions.
Can we compute global parameters in sublinear space?

Ahn, K. J., Guha, S., and McGregor, A. (2012). Analyzing graph structure via linear measurements. In Proceedings of SODA’12.
McGregor, A. (2014). Graph stream algorithms: a survey. ACM SIGMOD.

A

B

C
E

D

F +DF, -BC, +BE, +AC+BC, -DF, -BD, +AE
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Graph Streams
Can we construct a full spanning forest of the graph in 
sublinear space?

A

B

C
E

D

F
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Graph Streams
Idea: we can sample an edge from each vertex and merge its 
endpoints in a single “super-vertex”. Repeat. This procedures 
finishes in O(log n) steps.

A

B

C
E

D

F
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Graph Streams
Idea: we can sample an edge from each vertex and merge its 
endpoints in a single “super-vertex”. Repeat. This procedures 
finishes in O(log n) steps.
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B

C
E

D
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Graph Streams
Idea: we can sample an edge from each vertex and merge its 
endpoints in a single “super-vertex”. Repeat. This procedures 
finishes in O(log n) steps.

A

B

C
E

D

F
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Graph Streams
A simpler problem: 
Is it possible to sample a random edge from any cut-set 
[S, V\S] in a graph stream storing less than O(n2) bits?

A

B

C
E

D

F
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Sampling edges from cut-set
Idea: to represent graph through a modified incidence matrix, where each edge 
is represented twice (once in each “direction”).

A

B

C
E

D

F

A
B
C
D
E
F

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD

0

-1 1 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0

0 0 -1 1 0 0 0 0 1 -1 1 -1 1 -1 0 0

0 0 0 0 -1 1 0 0 -1 1 0 0 0 0 1 -1

0 0 0 0 0 0 -1 1 0 0 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1
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Sampling edges from cut-set
The main benefit from this representation is the ability to sum incidence vectors 
to find the corresponding vector of a cut-set. Being able to sample nonzero 
coordinates from this vector implies sampling edges from such cut-set.

A

B

C
E

D

F

A
+B
+D

{A, B, D}

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD

0

-1 1 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0

0 0 0 0 -1 1 0 0 -1 1 0 0 0 0 1 -1

0 0 1 -1 0 0 -1 1 -1 1 0 0 0 0 1 -1
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What is ℓ0-sampling?
Sampling, with uniform probability, of 
a nonzero coordinate from a vector a, 
represented incrementally by a 
stream of updates. 

● Some updates may cancel others;
● Must be done in sublinear space;
● Known lower-bound: Ω(log2 n).

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005). 
Summarizing and mining inverse distributions on data streams 
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for  
lp-samplers, finding duplicates in streams, and related 
problems. In Proceedings of PODS’11.

1 0 8 -4 0 -7 -15 9 -1 0

1
a

2 3 4 5 6 7 8 9 10

(3, +8)
(1, +1)
(4, -4)

(9, +3)
(10, -5)

(10, -1)
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What is ℓ0-sampling?
Sampling, with uniform probability, of 
a nonzero coordinate from a vector a, 
represented incrementally by a 
stream of updates. 

● Some updates may cancel others;
● Must be done in sublinear space;
● Known lower-bound: Ω(log2 n).

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005). 
Summarizing and mining inverse distributions on data streams 
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for  
lp-samplers, finding duplicates in streams, and related 
problems. In Proceedings of PODS’11.

1 0 8 -4 0 -7 -15 9 -1 0

1
a

2 3 4 5 6 7 8 9 10
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Sampling edges from cut-set
Is it possible to encode each incidence vector in a compact representation?

random projection

0 0 1 -1 0 0 -1 1 -1 1 0 0 0 0 1 -1

ℓ0-sampler
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ℓ0-sampling algorithm

Assign each coordinate a random bucket
Use hash functions. Each bucket must have exponentially decreasing probabilities of 
representing each coordinate.

Find 1-sparse vector
There is a high probability that at least one bucket will represent a 1-sparse 
vector, that is, a vector with a single nonzero coordinate.

Recover its only nonzero coordinate
Through a randomized procedure called 1-sparse recovery, it is possible to 
recover the nonzero coordinates from 1-sparse vectors, using O(log n) bits.

The sampling algorithm is based on the following idea:

32



1-sparse recovery
Tests if a vector is 1-sparse. If yes, it 
recovers the single nonzero 
coordinate.

linear transform

not 
1-sparse

yes no

100% sureprob. ≥ 1 - n/pO(log n) bits
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Variant (a) Variant (b)

p=1/4p=1/2 p=1/8 p=1/16 p=2-m

1 2 3 4 m

(ui,Δi)

h(ui)

p=1/2 p=1/8 p=1/16 p=2-mp=1/4

1 2 3 4 m

(ui,Δi)
hj(ui)

● Single hash function (more efficient);
● Non-independent buckets.

● Multiple hash function;
● Independent buckets (easier).
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ℓ0-sampling algorithm

1
It is easy to see that for every 
value of r, there will always be 
a bucket with high probability 
of recovery (~0.35).

2
There will also be other 
adjacent buckets with high 
probability of recovery.3

Observations
We define r, the number of 
nonzero coordinates in a 
vector. pi is the probability of 
the ith bucket being 1-sparse.

r = 200

r = 4096

r = 10.000.000
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ℓ0-sampling algorithm
m = ⌈log2n + 5⌉ is enough to ensure a failure probability of less than 0.31.

analyzing
factors’ maxima 36



Experimental results
Correcly sized setup.

Variant (a)

Variant (b)

1
Variants behave similarly, with 
error apparently constant 
under 20% in both tests.2
The distribution of sampled 
coordinates (not shown) was 
also similar in both tests.3

Observations
We tested both variants in a 
correctly sized setup, i.e. 
r ≤ 4096, m = 17.
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Experimental results
Undersized setup.

Variant (a)

Variant (b)

1
Variants behave similarly, with 
error growing from under 20% 
to almost 100% in both tests.2
The distribution of sampled 
coordinates (not shown) was 
also similar in both tests.3

Observations
We tested both variants in an 
undersized setup, i.e. 
r ≤ 4096, m = 10.
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Conclusion
What should we expect from sketching data 
structures in a near future?
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In this talk...

Bloom Filter
Adjacency test on general graphs in O(m) bits. Specially useful for sparse massive 
graphs. Has constant probability of false positives. No false negatives.

MinHash
Adjacency test on trees in O(n) bits. Better space complexity than the optimal 
deterministic representation. Useful for giant trees (over a billion nodes).

ℓ0-Sampler
Dynamic spanning forest in O(n log3 n) bits. Useful for very dense graphs.

… I presented the application of three sketching data structures for massive 
graph problems.

#
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Not only a theory. Not only for graphs.
Sketching data structures are growing

Mash: Fast genome and 
metagenome distance 

estimation using MinHash.

Redis PFCOUNT: set distinct 
count using HyperLogLog.

MMDS book chapter 4: 
several sketch-based 

stream algorithms.
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Our next steps

ℓ0-Sampler
The ability to sample edges from cut-sets is very useful 
and can help to produce many new graph algorithms.

We are searching for new algorithms that use ℓ0-sampling as a primitive
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Questions?
Slidedeck available at: 
juanlopes.net/poly18
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https://www.juanlopes.net/poly18

