SKETCHING DATA STRUCTURES
FOR MASSIVE GRAPH PROBLEMS

Juan P. A. Lopes?, Fabiano S. Oliveira?,
Paulo E. D. Pinto?, Valmir C. Barbosa?

August 31°%, 2018

! Federal University of Rio de Janeiro (UFR))
2 State University of Rio de Janeiro (UER))

<>VLDBQO18 VLDB Workshop
& Poly*18

@ Motivation

Probabilistic Implicit
Representations

% Graph streams
Conclusion

Motivation

Why are sketching data structures
relevant to graph problems?

Some real-life graphs are massive

Observing global structures is hard
Facebook

Number of active users, 2018.

Routers

Typical amount of RAM in
a typical router.

Twitter

Estimated number of
directed edges, 2018.

100’s

of billions

Internet

Number of connected
devices, 2018.

Metagenomic assemblies

Number of basepairs in a typical
metagenomic sample.

4

SOME REAL-LIFE GRAPHS ARE
MASSIVE AND DYNAMIC '

How to deal with.thém?

Probabilistic Implicit

Representations

Use less memory by allowing errors

Space Optimal Representations

e A representation is said to be space optimal if it requires O(f(n)) bits to
represent a class containing 2°™) graphs on n vertices;
e Optimality depends on the represented class.

General Trees Complete
Graphs Graphs
Adjacency Matrix: \/
O(n?)
Adjacency List:
O(m log n) \/

Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.

| Implicit Representations

A representation is said to be implicit if it has the following properties:

Space optimal

O(f(n)) bits to represent a class containing 2°™ graphs on n vertices;

@ Distributes information
Each vertex stores O(f(n)/n) bits;

@ Local adjacency test
Only local vertex information is required to test adjacency;

Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.

| Probabilistic Implicit Representations

For probabilistic implicit representations, we introduce a fourth property:

Space optimal

O(f(n)) bits to represent a class containing 2°™ graphs on n vertices;
.@ Distributes information

Each vertex stores O(f(n)/n) bits;
Local adjacency test

Only local vertex information is required to test adjacency;
©) Probabilistic adjacency test
Constant relative probability of false positives or false negatives.

Bloom filter

Represents sets, allowing membership
tests with a probability of false
positives.

e There are no false negatives;
e 10 bits per element are enough to
ensure for a false positive

probability of less than 1%. ofafofofafa]afofofafofofafofo]s]

Bloom, B. H. (1970). Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM.

Bloom filter

ldea: to replace each vertex set in an
adjacency list with a Bloom filter.

e Each edge would require only
O(1) bits, instead of O(log n);

e By using Bloom filters, there
would be no false negatives, only
false positives.

e Similarly, a single Bloom filter
could be used to store the entire
edge set, but technically this
would not be an implicit
representation.

REGULAR
ADJACENCY LIST

BLOOM FILTER
REPRESENTATION

MinHash

Represents sets through a
constant-sized signature and allow
computing the Jaccard coefficient
between two or more sets.

Broder, A. Z. (1997). On the resemblance and containment of
documents. In Compression and complexity of sequences.

R == ch = h =/ 2 ="2ZR¥h

1 2 3 4 5 6 7 8
ey e I I N 2 A
e S i S E A E B

AN B
AU B

hmin(A) = min{h(x),x € A}
Pr(hmin(A) = hmin(B)] = J(A, B)

J(A, B) =

MinHash _

ldea: construct a set for each vertex, such that the Jaccard index between any
pair of vertices encodes their adjacency.

(’vi,’vj) ¢ E J(Sz,S]) S 5A
(’viavj) c b < J(S’HSJ) > 5B

13

MinHash

Example of sets construction for &, = s and &, = ¥2.

{1,2,3,4,5,6,7,8}

{1,3,5,7} {1,4,5, 8}

{1,3,5,7,13, 14, 15, 16}

{1,3,5,7,9,10, 11, 12}

{1, 4,5,8,17, 18, 19, 20}

{1,5,9, 11}

{1,5,17, 19}

(1.8,17,20 (1.5.18,20}

selection

extension

selection

O(n) bitf4

| Experimental Results

For MinHash-based representation

B false negati'ves B false positives

0!4

Trreshold (6)'

Observations

The experiment was run with
1 k=128 hash functions and a
graph with n=200 vertices.

Increasing the threshold
2 seems to increase the rate of
false negatives and decrease

false positives.

The perfect threshold depends
on the application tolerance

for false positives and false
negatives.

15

| Experimental Results

For MinHash-based representation

Signature size (k)|

megatives B false positives
7.5%
5!0% \
2.5%
2'5 5‘0

Observations

The experiment was run with
® = 0.375 and a graph with
n=200 vertices.

Increasing the signature size
seems to have more effect on
the rate of false negatives
than positives.

This effect appears the same
for whatever choice of
threshold.

16

'

Other results

Any efficient representation for bipartite, co-bipartite or split graphs can be
used to represent general graphs efficiently.

Other results

Modeling this problem through integer
programming allows proving the
infeasibility of specific configurations.

e Each possible subset of vertices is
modelled as a variable.

e FEach variable describes the size
of the set intersection between T 54+ 5T | SN
those vertices. st. 64+ 625 — 4T Ap + 62Ac + 62BC — 4T ABC < O

—4x A — 4xAB — 4xCc + 62AC — 4TBC + 62ABC < O
6xp + 6xaB + 6xCc + 6TAC — 4xBC — 4T ABC < O
TA+ TAB + Tac +TaBc > 1

TB + TAB + TBc + TaBc = 1

xc +xrac +rBc +TaBc > 1

18

Other results

Modeling this problem through integer
programming allows proving the
infeasibility of specific configurations.

e Each possible subset of vertices is
modelled as a variable.

e FEach variable describes the size
of the set intersection between
those vertices.

e Do all threshold values have an
infeasible bipartite graph? Still an
open problem.

e Impossible ford, =0.4 e o, = 0.6.

e Possible for 6A =Ye 6B = 15,

Graph Streams

How to represent dynamic graphs in sublinear space?

Graph Streams

Graph Streams are graphs represented in the data stream model, i.e.
single-pass through a stream of edge insertions and deletions.

Can we compute global parameters in sublinear space?

+8c, -DF; -BD, +AE G +DF,; -BC,+BE; +ac

Ahn, K. J., Guha, S., and McGregor, A. (2012). Analyzing graph structure via linear measurements. In Proceedings of SODA’12.
McGregor, A. (2014). Graph stream algorithms: a survey. ACM SIGMOD. 2 1

Graph Streams

Can we construct a full spanning forest of the graph in
sublinear space?

22

'

Graph Streams
ldea: we can sample an edge from each vertex and merge its
endpoints in a single “super-vertex”. Repeat. This procedures

finishes in O(log n) steps.

pAC

Graph Streams e

ldea: we can sample an edge from each vertex and merge its

endpoints in a single “super-vertex”. Repeat. This procedures
finishes in O(log n) steps.

24

Graph Streams e

ldea: we can sample an edge from each vertex and merge its

endpoints in a single “super-vertex”. Repeat. This procedures
finishes in O(log n) steps.

PAS

Graph Streams

A simpler problem:
Is it possible to sample a random edge from any cut-set
[S, VAS] in a graph stream storing less than O(n?) bits?

pAS

'

ldea: to represent graph through a modified incidence matrix, where each edge
Is represented twice (once in each “direction”).

Sampling edges from cut-set

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD
i1}j-1,1}j-1,0Jj0)0j]0O}JO)O0O}JOJO|JO})JO]JO]O
-1J]1]0)}0 i1}/j-171}-1J0j0}J0)0|jO)0}JO0O]}O

ojoj-14314J0y0§y0)0312}j-131}j-1231}J-1,019}0

©

/7

N o

PN

N\
mMm g o w >

27

'

The main benefit from this representation is the ability to sum incidence vectors
to find the corresponding vector of a cut-set. Being able to sample nonzero
coordinates from this vector implies sampling edges from such cut-set.

| Sampling edges from cut-set

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD
Alal-2f2]2|/o|lofolo|lolo|ofo|o|o|o]o
. +Bl2f2fololaf-2fz]l-2|o|lo|ofo|o|o|o]o
\ e
@ , /\ +D|loflolo|ol-2af2fo]|o|-2f2fo]|o|o|ofa]-1
\
N "

\ /7

@ {A,B,D} |o]ofat-a]o|of-aefaf-2afia]o|o]o]o oy

28

What is £ ,-sampling?

Sampling, with uniform probability, of

(9,+3)

a nonzero coordinate from a vector a, (10, -5)
represented incrementally by a (10, -1)
stream of updates.
i aft]oef-afaf]s]ef]fo]
e Some updates may cancel others; .. U R E R D
e Must be done in sublinear space;
e Known lower-bound: Q(log? n). (?1’ ;"18))
(4, -4)

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005).
Summarizing and mining inverse distributions on data streams
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for
Ip-samplers, finding duplicates in streams, and related
problems. In Proceedings of PODS'11. 29

What is £ ,-sampling?
Sampling, with uniform probability, of
a nonzero coordinate from a vector q,

represented incrementally by a
stream of updates.

e Some updates may cancel others;

e Must be done in sublinear space;
e Known lower-bound: Q(log? n).

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005).
Summarizing and mining inverse distributions on data streams
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for
Ip-samplers, finding duplicates in streams, and related
problems. In Proceedings of PODS'11.

| Sampling edges from cut-set

Is it possible to encode each incidence vector in a compact representation?

O(m)

Lo

0

0

[15

S o random projection _ _ _ _

/
/

900008

O(log® n)

{ ,-sampler

31

| t ,-sampling algorithm

The sampling algorithm is based on the following idea:

Assign each coordinate a random bucket

Use hash functions. Each bucket must have exponentially decreasing probabilities of
representing each coordinate.

Find 1-sparse vector

@ There is a high probability that at least one bucket will represent a 1-sparse
vector, that is, a vector with a single nonzero coordinate.

@ Recover its only nonzero coordinate

Through a randomized procedure called 1-sparse recovery, it is possible to
recover the nonzero coordinates from 1-sparse vectors, using O(log n) bits.

32

1-sparse recovery

Tests if a vector is 1-sparse. If yes, it
recovers the single nonzero
coordinate.

O(log n) bits

= linear transform

bo = » A
bl — ZAZ’LLZ

by = Z A;z% mod p

by = bozbl/bo mod p?

yes no

i = b1/bo Jot
a; = by 1-sparse
prob.>1-n/p 100% sure

33

| Variant (a) | Variant (b)

(u,A) (u,A)

P ’/%(u) h(u)
p=1/2 p=J/4 p=1/8 p=1/16 - p=1/2 p=1/4 p=1/8 p=1/16 p=2-m
6 lesTaslas s

e Single hash function (more efficient); EECERV/[F]ie/e]=Nale iR i¥[aleilelak
e Non-independent buckets. e Independent buckets (easier).

34

| { -sampling algorithm
pz = r2 7 exp(—727")

0.3
0.2

0.1
1

r=200

2 3 4 5 6 lEBIEI (@ g g2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

i / probabilityll

0.3

0.2

0.1

2 3 4 5 6 7 8 9 (O

r = 4096

f2 |8 04 §is {6 17 18 19 20 21 22 23 24 25 26 27 28

i/ probabilityl

0.3

0.2

0.1
1

r =10.000.000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2

i / probabilityll

Observations

We define r, the number of
1 nonzero coordinates in a
vector. p. is the probability of

the it" bucket being 1-sparse.

It is easy to see that for every
2 value of r, there will always be
a bucket with high probability
of recovery (~0.35).

There will also be other
3 adjacent buckets with high

probability of recovery.

35

t ,-sampling algorithm

m =[log,n + 51is enough to ensure a failure probability of less than 0.31.

it5
PriFAaiLure] <[] 1—r27Fexp(—r27*) < 0.31
k=1—5

1 = |logy 7

/ 18 19 20 21 22 23 24 25 26 27 28

i / probability]

analyzing 3
factors’ maxima

36

| Experimental results

Correcly sized setup.

non-zero coordinates (r) / probability|
[
5 variant (a)
0.5
-0:25
1000 2000 3000
non-zero coordinates (r) / probabilit
[
.- Variant (b)
0.5
-0:25
1 | |
1 OIOO 20|00 30‘00

Observations

w i -

We tested both variants in a
correctly sized setup, i.e.
r<4096, m=17.

Variants behave similarly, with
error apparently constant
under 20% in both tests.

The distribution of sampled
coordinates (not shown) was
also similar in both tests.

37

| Experimental results

Undersized setup.

-+ Variant (a

non-zero coordinates (r) / probability|

0.5
-0:25
1000 2000 3000
non-zero coordinates () / probability|
///
.. Variant (b)
0.5 /
L0257 ‘
10‘00 20100 30‘00

Observations

We tested both variants in an
undersized setup, i.e.
r <4096, m= 10.

Variants behave similarly, with
error growing from under 20%
to almost 100% in both tests.

The distribution of sampled
coordinates (not shown) was
also similar in both tests.

38

Conclusion

What should we expect from sketching data
structures in a near future?

In this talk... R

.. | presented the application of three sketching data structures for massive
graph problems.

Bloom Filter

Adjacency test on general graphs in O(m) bits. Specially useful for sparse massive
graphs. Has constant probability of false positives. No false negatives.

MinHash

Adjacency test on trees in O(n) bits. Better space complexity than the optimal
deterministic representation. Useful for giant trees (over a billion nodes).

{ ,-Sampler

Dynamlc spanning forest in O(n log® n) bits. Useful for very dense graphs.

40

| Sketching data structures are growing
Not only a theory. Not only for graphs.

Mash: Fast genome and

metagenome distance
estimation using MinHash.

] marbl / Mash

<> Code (O Issues 24 i Pull requests 1 [l Projects 0 EE Wiki lils Insig
Fast genome and metagenome distance estimation using MinHash http://mash.readth

{D 370 commits ¥ 9 branches © 6 rel

Branch: master v New pull request Create

Brian Ondov Merge branch 'master' of https:/github.com/marbl/Mash

I data git Ifs stub for data/refseq.msh removed

.
redls Commands Clients Documentation Community D

PFCOUNT key [key ...]

Available since 2.8.9.

Time complexity: O(1) with a very small average constant time when called
with a single key. O(N) with N being the number of keys, and much bigger
constant times, when called with multiple keys.

When called with a single key, returns the approximated cardinality
computed by the _ data structure stored at the specified
variable, which is 0 if the variable does not exist.

Redis PFCOUNT: set distinct

count using HyperLogLog.

MMDS book chapter 4:

several sketch-based
stream algorithms.

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Big-data is transforming the world. Here you will learn data mining

process large datasets and extract valuable knowledge from them.

The book
The book is based on Stanford Compu(er Science course CS246: M|n|ng Massive Datasets (and CS345A: Data Mlnlng).

The book, like the course, is designed at the undergraduate computer science level with no formal prerequisites. To support deeper
explorations, most of the chapters are supplemented with further reading references.

The Mining of Massive Datasets book has been published by Cambridge University Press. You can get a 20% discount by applying the code
MMDS20 at checkout.

By agreement with the publisher, you can download the book for free from this page. Cambridge University Press does, however, retain
copyright on the work, and we expect that you will obtain their ission and our ip if you republish parts or all of it.

‘We welcome your feedback on the manuscript.

41

| Our next steps

We are searching for new algorithms that use £ -sampling as a primitive

@ t ,-Sampler

The ability to sample edges from cut-sets is very useful
and can help to produce many new graph algorithms.

42

Questions?

Slidedeck available at:
juanlopes.net/poly18

43

https://www.juanlopes.net/poly18

