
SKETCHING DATA STRUCTURES
FOR MASSIVE GRAPH PROBLEMS

Juan P. A. Lopes1, Fabiano S. Oliveira2,
Paulo E. D. Pinto2, Valmir C. Barbosa1

August 31st, 2018

VLDB Workshop
Poly'18

1 Federal University of Rio de Janeiro (UFRJ)
2 State University of Rio de Janeiro (UERJ)

Agenda Motivation
Probabilistic Implicit
Representations

Graph streams

Conclusion

2

Motivation
Why are sketching data structures
relevant to graph problems?

3

Some real-life graphs are massive
Observing global structures is hard

2.2
billion

128
MB

233
billion

23
billion

100’s
of billionsNumber of connected

devices, 2018.

Internet

Estimated number of
directed edges, 2018.

Twitter

Number of active users, 2018.
Facebook

Typical amount of RAM in
a typical router.

Routers

Number of basepairs in a typical
metagenomic sample.

Metagenomic assemblies

4

SOME REAL-LIFE GRAPHS ARE
MASSIVE AND DYNAMIC

How to deal with them?

5

Probabilistic Implicit
Representations
Use less memory by allowing errors

6

Space Optimal Representations

General
Graphs Trees Complete

Graphs

Adjacency Matrix:
O(n2)

Adjacency List:
O(m log n)

● A representation is said to be space optimal if it requires O(f(n)) bits to
represent a class containing 2ϴ(f(n)) graphs on n vertices;

● Optimality depends on the represented class.

7
Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.

Implicit Representations

A representation is said to be implicit if it has the following properties:

Space optimal
O(f(n)) bits to represent a class containing 2ϴ(f(n)) graphs on n vertices;

Distributes information
Each vertex stores O(f(n)/n) bits;

Local adjacency test
Only local vertex information is required to test adjacency;

8
Spinrad, J. P. (2003). Efficient graph representations. American Mathematical Society.

Probabilistic Implicit Representations

Space optimal
O(f(n)) bits to represent a class containing 2ϴ(f(n)) graphs on n vertices;

Distributes information
Each vertex stores O(f(n)/n) bits;

Local adjacency test
Only local vertex information is required to test adjacency;

For probabilistic implicit representations, we introduce a fourth property:

Probabilistic adjacency test
Constant relative probability of false positives or false negatives.

9

Bloom filter
Represents sets, allowing membership
tests with a probability of false
positives.

● There are no false negatives;
● 10 bits per element are enough to

ensure for a false positive
probability of less than 1%.

10
Bloom, B. H. (1970). Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM.

Bloom filter
Idea: to replace each vertex set in an
adjacency list with a Bloom filter.

● Each edge would require only
O(1) bits, instead of O(log n);

● By using Bloom filters, there
would be no false negatives, only
false positives.

● Similarly, a single Bloom filter
could be used to store the entire
edge set, but technically this
would not be an implicit
representation.

2

1

3

2

2 41

3

3 5

REGULAR
ADJACENCY LIST

0

BLOOM FILTER
REPRESENTATION

1 1 0

1 0 1 1

0 1 1 1

0 1

1 0

0 1

0 1

11

MinHash
Represents sets through a
constant-sized signature and allow
computing the Jaccard coefficient
between two or more sets.

6MinHash(A) 71 57 106

81MinHash(B) 80 34 73 88

6 71 57 106

81 80 73 88

11 6 1 34

11 6 1 34

12
Broder, A. Z. (1997). On the resemblance and containment of
documents. In Compression and complexity of sequences.

MinHash
Idea: construct a set for each vertex, such that the Jaccard index between any
pair of vertices encodes their adjacency.

0 1δ
A

δ
B

13

MinHash
Example of sets construction for δA = ⅓ and δB = ½.

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 3, 5, 7} {1, 4, 5, 8}

{1, 3, 5, 7, 9, 10, 11, 12}

{1, 3, 5, 7, 13, 14, 15, 16}

{1, 4, 5, 8, 17, 18, 19, 20}

{1, 5, 9, 11}

root

selection

extension

selection
{1, 5, 17, 19} {1, 8, 17, 20} {1, 5, 18, 20}

O(n) bits
14

Experimental Results
For MinHash-based representation

1
Increasing the threshold
seems to increase the rate of
false negatives and decrease
false positives.

2
The perfect threshold depends
on the application tolerance
for false positives and false
negatives.

3

Observations
The experiment was run with
k=128 hash functions and a
graph with n=200 vertices.

15

Experimental Results
For MinHash-based representation

1
Increasing the signature size
seems to have more effect on
the rate of false negatives
than positives.

2
This effect appears the same
for whatever choice of
threshold.3

Observations
The experiment was run with
δ = 0.375 and a graph with
n=200 vertices.

16

Other results
Any efficient representation for bipartite, co-bipartite or split graphs can be
used to represent general graphs efficiently.

1

3

2 5

4

1

2

3

4

5

1

2

3

4

5

17

Other results
Modeling this problem through integer
programming allows proving the
infeasibility of specific configurations.

xA

xAB
SA

SB

SC

xB

xC

xAC xBC

xABCA

B

C

● Each possible subset of vertices is
modelled as a variable.

● Each variable describes the size
of the set intersection between
those vertices.

18

Other results
Modeling this problem through integer
programming allows proving the
infeasibility of specific configurations.

● Each possible subset of vertices is
modelled as a variable.

● Each variable describes the size
of the set intersection between
those vertices.

● Do all threshold values have an
infeasible bipartite graph? Still an
open problem.

K3,3

● Impossible for δA = 0.4 e δB = 0.6.

● Possible for δA = ⅓ e δB = ½.

19

Graph Streams
How to represent dynamic graphs in sublinear space?

20

Graph Streams
Graph Streams are graphs represented in the data stream model, i.e.
single-pass through a stream of edge insertions and deletions.
Can we compute global parameters in sublinear space?

Ahn, K. J., Guha, S., and McGregor, A. (2012). Analyzing graph structure via linear measurements. In Proceedings of SODA’12.
McGregor, A. (2014). Graph stream algorithms: a survey. ACM SIGMOD.

A

B

C
E

D

F +DF, -BC, +BE, +AC+BC, -DF, -BD, +AE

21

Graph Streams
Can we construct a full spanning forest of the graph in
sublinear space?

A

B

C
E

D

F

22

Graph Streams
Idea: we can sample an edge from each vertex and merge its
endpoints in a single “super-vertex”. Repeat. This procedures
finishes in O(log n) steps.

A

B

C
E

D

F

23

Graph Streams
Idea: we can sample an edge from each vertex and merge its
endpoints in a single “super-vertex”. Repeat. This procedures
finishes in O(log n) steps.

A

B

C
E

D

F

24

Graph Streams
Idea: we can sample an edge from each vertex and merge its
endpoints in a single “super-vertex”. Repeat. This procedures
finishes in O(log n) steps.

A

B

C
E

D

F

25

Graph Streams
A simpler problem:
Is it possible to sample a random edge from any cut-set
[S, V\S] in a graph stream storing less than O(n2) bits?

A

B

C
E

D

F

26

Sampling edges from cut-set
Idea: to represent graph through a modified incidence matrix, where each edge
is represented twice (once in each “direction”).

A

B

C
E

D

F

A
B
C
D
E
F

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD

0

-1 1 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0

0 0 -1 1 0 0 0 0 1 -1 1 -1 1 -1 0 0

0 0 0 0 -1 1 0 0 -1 1 0 0 0 0 1 -1

0 0 0 0 0 0 -1 1 0 0 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1

27

Sampling edges from cut-set
The main benefit from this representation is the ability to sum incidence vectors
to find the corresponding vector of a cut-set. Being able to sample nonzero
coordinates from this vector implies sampling edges from such cut-set.

A

B

C
E

D

F

A
+B
+D

{A, B, D}

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0

AB BA AC CA BD DB BE EB CD DC CE EC CF FC DF FD

0

-1 1 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0

0 0 0 0 -1 1 0 0 -1 1 0 0 0 0 1 -1

0 0 1 -1 0 0 -1 1 -1 1 0 0 0 0 1 -1

28

What is ℓ0-sampling?
Sampling, with uniform probability, of
a nonzero coordinate from a vector a,
represented incrementally by a
stream of updates.

● Some updates may cancel others;
● Must be done in sublinear space;
● Known lower-bound: Ω(log2 n).

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005).
Summarizing and mining inverse distributions on data streams
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for
lp-samplers, finding duplicates in streams, and related
problems. In Proceedings of PODS’11.

1 0 8 -4 0 -7 -15 9 -1 0

1
a

2 3 4 5 6 7 8 9 10

(3, +8)
(1, +1)
(4, -4)

(9, +3)
(10, -5)

(10, -1)

29

What is ℓ0-sampling?
Sampling, with uniform probability, of
a nonzero coordinate from a vector a,
represented incrementally by a
stream of updates.

● Some updates may cancel others;
● Must be done in sublinear space;
● Known lower-bound: Ω(log2 n).

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005).
Summarizing and mining inverse distributions on data streams
via dynamic inverse sampling. In Proceedings of VLDB’05.

Jowhari, H., Saglam, M., and Tardos, G. (2011). Tight bounds for
lp-samplers, finding duplicates in streams, and related
problems. In Proceedings of PODS’11.

1 0 8 -4 0 -7 -15 9 -1 0

1
a

2 3 4 5 6 7 8 9 10

30

Sampling edges from cut-set
Is it possible to encode each incidence vector in a compact representation?

random projection

0 0 1 -1 0 0 -1 1 -1 1 0 0 0 0 1 -1

ℓ0-sampler

31

ℓ0-sampling algorithm

Assign each coordinate a random bucket
Use hash functions. Each bucket must have exponentially decreasing probabilities of
representing each coordinate.

Find 1-sparse vector
There is a high probability that at least one bucket will represent a 1-sparse
vector, that is, a vector with a single nonzero coordinate.

Recover its only nonzero coordinate
Through a randomized procedure called 1-sparse recovery, it is possible to
recover the nonzero coordinates from 1-sparse vectors, using O(log n) bits.

The sampling algorithm is based on the following idea:

32

1-sparse recovery
Tests if a vector is 1-sparse. If yes, it
recovers the single nonzero
coordinate.

linear transform

not
1-sparse

yes no

100% sureprob. ≥ 1 - n/pO(log n) bits

33

Variant (a) Variant (b)

p=1/4p=1/2 p=1/8 p=1/16 p=2-m

1 2 3 4 m

(ui,Δi)

h(ui)

p=1/2 p=1/8 p=1/16 p=2-mp=1/4

1 2 3 4 m

(ui,Δi)
hj(ui)

● Single hash function (more efficient);
● Non-independent buckets.

● Multiple hash function;
● Independent buckets (easier).

34

ℓ0-sampling algorithm

1
It is easy to see that for every
value of r, there will always be
a bucket with high probability
of recovery (~0.35).

2
There will also be other
adjacent buckets with high
probability of recovery.3

Observations
We define r, the number of
nonzero coordinates in a
vector. pi is the probability of
the ith bucket being 1-sparse.

r = 200

r = 4096

r = 10.000.000

35

ℓ0-sampling algorithm
m = ⌈log2n + 5⌉ is enough to ensure a failure probability of less than 0.31.

analyzing
factors’ maxima 36

Experimental results
Correcly sized setup.

Variant (a)

Variant (b)

1
Variants behave similarly, with
error apparently constant
under 20% in both tests.2
The distribution of sampled
coordinates (not shown) was
also similar in both tests.3

Observations
We tested both variants in a
correctly sized setup, i.e.
r ≤ 4096, m = 17.

37

Experimental results
Undersized setup.

Variant (a)

Variant (b)

1
Variants behave similarly, with
error growing from under 20%
to almost 100% in both tests.2
The distribution of sampled
coordinates (not shown) was
also similar in both tests.3

Observations
We tested both variants in an
undersized setup, i.e.
r ≤ 4096, m = 10.

38

Conclusion
What should we expect from sketching data
structures in a near future?

39

In this talk...

Bloom Filter
Adjacency test on general graphs in O(m) bits. Specially useful for sparse massive
graphs. Has constant probability of false positives. No false negatives.

MinHash
Adjacency test on trees in O(n) bits. Better space complexity than the optimal
deterministic representation. Useful for giant trees (over a billion nodes).

ℓ0-Sampler
Dynamic spanning forest in O(n log3 n) bits. Useful for very dense graphs.

… I presented the application of three sketching data structures for massive
graph problems.

#

40

Not only a theory. Not only for graphs.
Sketching data structures are growing

Mash: Fast genome and
metagenome distance

estimation using MinHash.

Redis PFCOUNT: set distinct
count using HyperLogLog.

MMDS book chapter 4:
several sketch-based

stream algorithms.

41

Our next steps

ℓ0-Sampler
The ability to sample edges from cut-sets is very useful
and can help to produce many new graph algorithms.

We are searching for new algorithms that use ℓ0-sampling as a primitive

42

Questions?
Slidedeck available at:
juanlopes.net/poly18

43

https://www.juanlopes.net/poly18

